Самостоятельный расчёт индивидуальной системы отопления

Содержание
  1. Последствия ошибок расчёта и способы их исправления
  2. Считаем расход теплоты по квадратуре
  3. Расчет воздуха в системе
  4. Определение количества воздуха для РСВО
  5. Расчет количества воздуха для ЧРСВО
  6. Определение начальной температуры воздуха
  7. Расчет по радиаторам отопления на площадь
  8. Укрупненный расчет
  9. Точный расчет
  10. Расчет системы воздушного отопления — простая методика
  11. Подготовка выполнения расчёта
  12. 2 Особенности помещения
  13. Как воспользоваться результатами вычислений
  14. Расчет количества радиаторов при водяном отоплении
  15. Формула расчета
  16. Характеристики радиаторов
  17. Тепловой баланс здания
  18. Формулы для расчётов и справочные данные
  19. Современные отопительные элементы
  20. 1 Простые приёмы расчёта
  21. Особенности расчета СВО
  22. ГР главного циркуляционного кольца
  23. ГР второстепенного циркуляционного кольца
  24. Расчет радиаторных батарей
  25. Однотрубная отопительная система
  26. Вертикальная отопительная система

Последствия ошибок расчёта и способы их исправления

Очевидно, что гидравлический расчёт является достаточно сложным и ответственным этапом разработки отопления. Для облегчения подобных вычислений разработан целый математический аппарат, существуют многочисленные версии компьютерных программ, предназначенных для автоматизации процесса его выполнения.

Несмотря на это, от ошибок никто не застрахован. Среди наиболее распространённых выбор мощности тепловых приборов без проведения расчёта, указанного выше. В этом случае, помимо более высокой стоимости самих радиаторных батарей (если мощность больше требуемой), система будет затратной, расходуя повышенное количество топлива и требуя более значительных на свое содержание. Проще говоря, в комнатах будет жарко, форточки постоянно открыты и придётся дополнительно оплачивать обогрев улицы. В случае заниженной мощности попытки обогрева приведут к работе котла на повышенной мощности и также потребуют высоких финансовых затрат. Исправить такую ошибку достаточно сложно, возможно потребуется полностью переделывать всё отопление.

монтаж радиаторных батарейнарушение правил установки батареи

Следующая группа ошибок относится к ошибке определения требуемой мощности источника тепла и приборов отопления. Если мощность котла заведомо выше мощности отопительных приборов, он будет работать неэффективно, потребляя большее количество топлива. Налицо двойной перерасход средств: в момент покупки такого котла и в ходе эксплуатации. Чтобы исправить положение, такой котёл, радиаторы или насос, а то и все трубы системы, придётся менять.

При расчёте требуемой мощности котла, может быть допущена ошибка в определении потерь тепла зданием. В результате мощность генератора тепловой энергии будет завышена. Результатом будет перерасход топлива. Чтобы исправить ошибку, придётся заменить котёл.

Ошибочный расчёт балансировки системы, нарушение требований примерного равенства веток и т. п. может привести к необходимости установки более мощного насоса, позволяющего доставить носитель к дальним приборам отопления в нагретом состоянии. Однако в этом случае возможно появление «звукового сопровождения» в виде гула, свиста и т. п. Если подобные ошибки допущены в системе тёплого водяного пола, то результатом установки мощного насоса может стать «поющий пол».

При ошибках определения требуемого количества теплоносителя или переводе гравитационной системы на принудительную циркуляцию, объём его может оказаться слишком велик, и дальние приборы отопления не будут работать. Как и ранее, попытки решения проблемы увеличением интенсивности прогрева, приведут к перерасходу газа, износу котла. Решить вопрос можно применением нового насоса и гидрострелки, т. е. тепловой пункт придётся всё равно переделывать.

После всего можно однозначно сказать, что проведение гидравлического расчёта системы отопления позволит гарантированно минимизировать расходы на всех этапах проектирования, устройства, монтажа и долговременной эксплуатации высокоэффективной системы водяного отопления.

Считаем расход теплоты по квадратуре

Для приблизительной прикидки отопительной нагрузки обычно используется простейший тепловой расчет: берется площадь здания по наружному обмеру и умножается на 100 Вт. Соответственно, потребление тепла дачным домиком 100 м² составит 10000 Вт или 10 кВт. Результат позволяет подобрать котел с коэффициентом запаса 1.2—1.3, в данном случае мощность агрегата принимается равной 12.5 кВт.

Мы предлагаем выполнить более точные вычисления, учитывающие расположение комнат, количество окон и регион застройки. Итак, при высоте потолков до 3 м рекомендуется использовать следующую формулу:

Расчет ведется для каждого помещения отдельно, затем результаты суммируются и умножаются на региональный коэффициент. Расшифровка обозначений формулы:

  • Q – искомая величина нагрузки, Вт;
  • Sпом – квадратура комнаты, м²;
  • q – показатель удельной тепловой характеристики, отнесенный к площади помещения, Вт/м²;
  • k – коэффициент, учитывающий климат в районе проживания.

В приближенном подсчете по общей квадратуре показатель q = 100 Вт/м². Подобный подход не учитывает расположение комнат и разное количество световых проемов. Коридор, находящийся внутри коттеджа, потеряет гораздо меньше тепла, чем угловая спальня с окнами той же площади. Мы предлагаем принимать величину удельной тепловой характеристики q следующим образом:

  • для помещений с одной наружной стеной и окном (или дверью) q = 100 Вт/м²;
  • угловые комнаты с одним световым проемом – 120 Вт/м²;
  • то же, с двумя окнами – 130 Вт/м².

Как правильно подбирать значение q, наглядно показано на плане здания. Для нашего примера расчет выглядит так:

Q = (15.75 х 130 + 21 х 120 + 5 х 100 + 7 х 100 + 6 х 100 + 15.75 х 130 + 21 х 120) х 1 = 10935 Вт ≈ 11 кВт.

Как видите, уточненные вычисления дали другой результат – по факту на отопление конкретного домика 100 м² израсходуется на 1 кВт тепловой энергии больше. Цифра учитывает расход теплоты на подогрев наружного воздуха, проникающего в жилище сквозь проемы и стены (инфильтрацию).

Расчет воздуха в системе

Зная теплопотери, рассчитаем расход воздуха в системе используя формулу

 G = Qп / (с * (tг-tв))

G- массовый расход воздуха, кг/с

Qп-  теплопотери помещения, Дж/с

C- теплоемкость воздуха, принимается 1,005 кДж/кгК

tг- температура нагретого воздуха (приток), К

tв – температура воздуха в помещении, К

Напоминаем что К= 273+°С, то есть чтоб перевести ваши градусы Цельсия в градусы Кельвина нужно к ним добавить 273. А чтоб перевести кг/с в кг/ч нужно кг/с умножить на 3600.

Перед расчетом расхода воздуха необходимо узнать нормы воздухообмена для для данного типа здания. Максимальная температура приточного воздуха 60°С, но если воздух подается на высоте меньше 3 м от пола эта температура снижается до 45°С.

Определение количества воздуха для РСВО

Для определения массы подаваемого воздуха при температуре tr используется формула:

Eot = Q/(c × (tr – tv)) 

Подставляя в формулу значения параметров, получим:

Eot = 16000/(1.005 × (55 – 22)) = 483

Объемное количество подаваемого воздуха рассчитывается по формуле:

Vot = Eot /pr,

где:

pr = 353/(273 + tr)

Для начала вычислим плотность p:

pr = 353/(273 + 55) = 1.07

Тогда:

Vot = 483/1.07 = 451.

Воздухообмен в помещении определяется по формуле:

Vp =Eot /pv

Определим плотность воздуха в помещении:

pv = 353/(273 + 22) = 1.19

Подставляя значения в формулу, получим:

Vp = 483/1.19 = 405

Таким образом, воздухообмен в помещении равен 405 м3 за час, а объем подаваемого воздуха должен быть равен 451 м3 за час.

Расчет количества воздуха для ЧРСВО

Для вычисления количества воздуха для ЧРСВО возьмем полученные сведения из предыдущего примера, а также tr = 55 °С,  tv = 22 °С; Q=16000 Вт. Количество воздуха, необходимого для вентиляции, Event=110 м3/ч. Расчетная наружная температура tn=-31 °С.

Для расчета ЧРСВО используем формулу:

Q3 = × c

Подставляя значения, получим:

Q3 = × 1.005 = 27000

Объем рециркуляционного воздуха составит 405-110=296 м3 в ч. Дополнительный расход тепла равен 27000-16000=11000 Вт.

Определение начальной температуры воздуха

Сопротивление механического воздуховода D=0.27 и берется из его технических характеристик. Длина воздуховода вне отапливаемого помещения l=15 м. Определено, что Q=16 кВт, температура внутреннего воздуха равна 22 градуса, а необходимая температура для отопления помещения равна 55 градусам.

Определим Eot по вышеизложенным формулам. Получим:

Eot = 10 × 3.6 × 1000/ (1.005 × (55 – 22)) = 1085

Величина теплового потока q1 составит:

q1 = (55 – 22)/0.27 = 122

Начальная температура при отклонении η = 0 составит:

tnach = 22 + (16 × 1000 + 137 × 15) × (55 – 22)/ 1000 × 16 = 60

Уточним среднюю температуру:

tsr = 0.5 × (55 + 60) = 57.5

Тогда:

Qotkl = ((574 -22)/0.27) × 15 = 1972

С учетом полученных сведений найдем:

tnach = 22 + (16 × 1000 + 1972) × (55 – 22)/(1000 × 16) = 59

Из этого следует вывод, что при движении воздуха теряется 4 градуса тепла. Чтобы уменьшить потери тепла, необходимо теплоизолировать трубы. Также рекомендуем вам ознакомиться с другой нашей статьей, в которой подробно описывается процесс обустройства системы воздушного отопления.

Расчет по радиаторам отопления на площадь

Укрупненный расчет

Если на 1 кв.м. площади требуется 100 Вт тепловой энергии, то помещение в 20 кв.м. должно получать 2 000 Вт. Типичный радиатор из восьми секций выделяет около 150 Вт тепла. Делим 2 000 на 150, получаем 13 секций. Но это довольно укрупненный расчет тепловой нагрузки.

Точный расчет

Точный расчет выполняется по следующей формуле: Qт = 100 Вт/кв.м. × S(помещения)кв.м. × q1 × q2 × q3 × q4 × q5 × q6× q7, где:

  • q1 – тип остекления: обычное =1,27; двойное = 1,0; тройное = 0,85;
  • q2 – стеновая изоляция: слабая, или отсутствующая = 1,27; стена выложенная в 2 кирпича = 1.0, современна, высокая = 0,85;
  • q3 – соотношение суммарной площади оконных проемов к площади пола: 40% = 1,2; 30% = 1,1; 20% – 0,9; 10% = 0,8;
  • q4 – минимальная уличная температура:  -35 С = 1,5; -25 С = 1,3; -20 С = 1,1; -15 С = 0,9; -10 С = 0,7;
  • q5 – число наружных стен в помещении: все четыре = 1.4, три = 1.3, угловая комната = 1.2, одна = 1.2;
  • q6 – тип расчетного помещения над расчетной комнатой: холодное чердачное = 1.0, теплое чердачное = 0.9, жилое отапливаемое помещение = 0.8;
  • q7 – высота потолков: 4,5 м = 1,2; 4,0 м = 1,15; 3,5 м = 1,1; 3,0 м = 1,05; 2,5 м = 1,3.

Расчет системы воздушного отопления — простая методика

Проектирование воздушного отопления не простая задача. Для ее решения необходимо выяснить ряд факторов, самостоятельное определение которых может быть затруднено. Специалисты компании РСВ могут бесплатно сделать для вас предварительный проект по воздушному отоплению помещения на основе оборудования ГРЕЕРС. 

Система воздушного отопления, как и любая другая, не может быть создана наобум. Для обеспечения медицинской нормы температуры и свежего воздуха в помещении потребуется комплект оборудования, выбор которого основывается на точном расчете. Существует несколько методик расчета воздушного отопления, разной степени сложности и точности. Обычная проблема расчетов такого типа состоит в отсутствии учета влияния тонких эффектов, предусмотреть которые не всегда имеется возможность

Поэтому производить самостоятельный расчет, не будучи специалистом в сфере отопления и вентиляции, чревато появлением ошибок или просчетов. Тем не менее, можно выбрать наиболее доступный способ, основанный на выборе мощности системы обогрева.

Формула определения теплопотерь:

Q=S*T/R

Где:

  • Q — величина теплопотерь (вт)
  • S — площадь всех конструкций здания (помещения)
  • T — разница внутренней и внешней температур
  • R — тепловое сопротивление ограждающих конструкций

Пример:

Здание площадью 800 м2 (20×40 м), высотой 5 м, имеется 10 окон размером 1,5×2 м. Находим площадь конструкций:
800 + 800 = 1600 м2 (площадь пола и потолка)
1,5 × 2 × 10 = 30 м2 (площадь окон)
(20 + 40) × 2 × 5 = 600 м2 (площадь стен). Вычитаем отсюда площадь окон, получаем «чистую» площадь стен 570 м2

В таблицах СНиП находим тепловое сопротивление бетонных стен, перекрытия и пола и окон. Можно определить его самостоятельно по формуле:

Где:

  • R — тепловое сопротивление
  • D — толщина материала
  • K — коэффициент теплопроводности

Для простоты примем толщину стен и пола с потолком одинаковой, равной 20 см. Тогда тепловое сопротивление будет равно 0,2 м / 1,3= 0,15 (м2*К)/Вт
Тепловое сопротивление окон выберем из таблиц: R = 0,4 (м2*К)/Вт
Разницу температур примем за 20°С (20°С внутри и 0°С снаружи).

Тогда для стен получаем

  • 2150 м2 × 20°С / 0,15 = 286666=286 кВт
  • Для окон: 30 м2 × 20°С/ 0,4 = 1500=1,5 кВт.
  • Суммарные теплопотери: 286 + 1,5 = 297,5 кВт.

Такова величина теплопотерь, которые необходимо компенсировать при помощи воздушного отопления мощностью около 300 кВт

Примечательно, что при использовании утепления пола и стен теплопотери снижаются как минимум на порядок.

Подготовка выполнения расчёта

Проведению качественного и детального расчёта должны предшествовать ряд подготовительных мероприятий по выполнению расчётных графиков. Эту часть можно назвать сбором информации для проведения расчёта. Являясь самой сложной частью в проектировании водяной отопительной системы, расчёт гидравлики позволяет точно спроектировать всю её работу. В подготавливаемых данных обязательно должно присутствовать определение требуемого теплового баланса помещений, которые будут обогреваться проектируемой отопительной системой.

В проекте расчёт ведётся с учётом типа выбранных приборов отопления, с определёнными поверхностями теплообмена и размещения их в обогреваемых помещениях, это могут быть батареи секций радиаторов или теплообменники других типов. Точки их размещения указываются на поэтажных планах дома или квартиры.

точки крепления приборов отопления,

После определения на плане требуемой конфигурации системы, её необходимо вычертить в аксонометрической проекции по всем этажам. На такой схеме каждому отопительному прибору присваивается номер, указывается максимальная тепловая мощность. Важным элементом, также указываемым для теплового прибора на схеме, является расчётная длина участка трубопровода для его подключения.

2 Особенности помещения

Вышеуказанные методы применимы только для приблизительного подсчёта. В связи с этим полностью им доверять не стоит. Даже человек, который ничего не понимает в подобных расчётах, может засомневаться в их правдоподобности. К примеру, не могут же быть одинаковые цифры для северных и южных регионов. Также стоит учитывать и количество окон, стен в комнате, которые выходят на улицу. Для комнаты, где одна стена контактирует с воздухом и имеется только одно окно, теплопотери будут выше, чем в угловом помещении с двумя окнами.

Кроме этого, важны и площадь самих окон, материал, из которых они изготовлены, и ещё другие нюансы, влияющие на теплопотери. Одним словом, учитывать при расчёте отопления помещения необходимо множество факторов. Сделать это не так сложно даже начинающему мастеру. Благодаря такому подходу теплопотери будут минимальными.

Как воспользоваться результатами вычислений

Зная потребность здания в тепловой энергии, домовладелец может:

  • четко подобрать мощность теплосилового оборудования для обогрева коттеджа;
  • набрать нужное количество секций радиаторов;
  • определить необходимую толщину утеплителя и выполнить теплоизоляцию здания;
  • выяснить расход теплоносителя на любом участке системы и при необходимости выполнить гидравлический расчет трубопроводов;
  • узнать среднесуточное и месячное потребление тепла.

Последний пункт представляет особый интерес. Мы нашли величину тепловой нагрузки за 1 час, но ее можно пересчитать на более продолжительный период и вычислить предполагаемый расход топлива — газа, дров или пеллет.

Расчет количества радиаторов при водяном отоплении

Формула расчета

В создании уютной атмосферы в доме при водяной системе отопления необходимым элементом являются радиаторы. При расчете учитываются общий объем дома, конструкция здания, материал стен, вид батарей и другие факторы.

Расчет производим следующим образом:

  • определяем тип помещения и выбираем вид радиаторов;
  • умножаем площадь дома на указанный тепловой поток;
  • делим полученное число на показатель теплового потока одного элемента (секции) радиатора и округляем результат в большую сторону.

Характеристики радиаторов

Тип радиатора

Тип радиатора Мощность секции Коррозийное воздействие кислорода Ограничения по Ph Коррозийное воздействие блуждающих токов Давление рабочее/ испытательное Гарантийный срок службы (лет)
Чугунный 110 6.5 — 9.0 6−9 /12−15 10
Алюминиевый 175−199 7— 8 + 10−20 / 15−30 3−10
Трубчатый Стальной 85 + 6.5 — 9.0 + 6−12 / 9−18.27 1
Биметаллический 199 + 6.5 — 9.0 + 35 / 57 3−10

Правильно проведя расчет и монтаж из высококачественных комплектующих, вы обеспечите ваш дом надежной, эффективной и долговечной индивидуальной системой отопления.

Тепловой баланс здания

Если в помещении есть много источников выделения тепла (тепловыделения от большого количества людей, от солнечной радиации или иных процессов, сопровождающихся выделением тепла), то данные показатели также должны быть учтены в тепловом балансе здания.

Теплопотери и теплопоступления в помещении общественного здания.

Но, как правило, в условиях континентального климата для жилых зданий этими показателями пренебрегают, устанавливая системы автоматики на системы отопления здания или термостатические вентиля на приборы отопления. Этими мероприятиями можно поддерживать постоянную температуру в помещениях независимо от колебаний температуры наружного воздуха или внутренних тепловых возмущений. В производственных или административных зданиях такие теплопоступления обычно компенсируются системами вентиляции.

Итоговый тепловой баланс здания определяется следующим образом:

Qот=Qогр+Qвент(инф)+/-Qвнутр,

где, Qогр – теплопотери через ограждающие конструкции здания,

Qвент(инф) – потери тепла на нагрев инфильтрации или приточных систем вентиляции,

Qвнутр – поступления тепла от внутренних источников (люди, оборудование, солнечная радиация и пр.).

Тепловой баланс здания определяется по максимальным значениям потерь тепла в зимний период года при минимальных расчетных температурах наружного воздуха, влажности и скорости ветра для конкретного региона строительства. Все расчетные параметры регламентируются в нормативной документации, а, в частности, в СНиП 23-01-99 «Строительная климатология».

Для рассматриваемого примера теплопотери здания, а конкретно нагрузка на систему отопления, могут значительно отличаться по каждому помещению, поэтому использование удельных показателей, рассчитанных ранее носит чисто информационный характер. На практике следует выполнить точный теплотехнический расчет.

Итак, тепловой баланс для помещения площадью 8,12 м? выглядит следующим образом:

Q=(Qуд+Qуд.инф)*8,12м? 

Q100мм=(103+44)*8,12=1 194 Вт

Q150мм=(81+44)*8,12=1 015 Вт

Q200мм=(70+44)*8,12=926 Вт

Формулы для расчётов и справочные данные

Расчет тепловой нагрузки на отопление предполагает определение тепловых потерь(Тп) и мощности котла (Мк). Последняя рассчитывается по формуле:

Мк=1,2* Тп, где:

  • Мк – тепловая производительность системы отопления, кВт;
  • Тп – тепловые потери дома;
  • 1,2 – коэффициент запаса (составляет 20%).

Двадцатипроцентный коэффициент запаса позволяет учесть возможное падение давления в газопроводе в холодное время года и непредвиденные потери тепла (например, разбитое окно, некачественная теплоизоляция входных дверей или небывалые морозы). Он позволяет застраховаться от ряда неприятностей, а также даёт возможность широкого регулирования режима температур.

Как видно из этой формулы мощность котла напрямую зависит от теплопотерь. Они распределяются по дому не равномерно: на наружные стены приходится порядка 40% от общей величины, на окна – 20%, пол отдаёт 10%, крыша 10%. Оставшиеся 20% улетучиваются через двери, вентиляцию.

Плохо утеплённые стены и пол, холодные чердак, обычное остекление на окнах — всё это приводит к большим потерям тепла, а, следовательно, к увеличению нагрузки на систему отопления

При строительстве дома важно уделить внимание всем элементам, ведь даже непродуманная вентиляция в доме будет выпускать тепло на улицу. Материалы, из которых построен дом, оказывают самое непосредственное влияние на количество потерянного тепла. Поэтому при расчётах нужно проанализировать, из чего состоят и стены, и пол, и всё остальное

Поэтому при расчётах нужно проанализировать, из чего состоят и стены, и пол, и всё остальное

Материалы, из которых построен дом, оказывают самое непосредственное влияние на количество потерянного тепла. Поэтому при расчётах нужно проанализировать, из чего состоят и стены, и пол, и всё остальное.

В расчётах, чтобы учесть влияние каждого из этих факторов, используются соответствующие коэффициенты:

  • К1 – тип окон;
  • К2 – изоляция стен;
  • К3 – соотношение площади пола и окон;
  • К4 – минимальная температура на улице;
  • К5 – количество наружных стен дома;
  • К6 – этажность;
  • К7 – высота помещения.

Для окон коэффициент потерь тепла составляет:

  • обычное остекление – 1,27;
  • двухкамерный стеклопакет – 1;
  • трёхкамерный стеклопакет – 0,85.

Естественно, последний вариант сохранит тепло в доме намного лучше, чем два предыдущие.

Правильно выполненная изоляция стен является залогом не только долгой жизни дома, но и комфортной температуры в комнатах.  В зависимости от материала меняется и величина коэффициента:

  • бетонные панели, блоки – 1,25-1,5;
  • брёвна, брус – 1,25;
  • кирпич (1,5 кирпича) – 1,5;
  • кирпич (2,5 кирпича) – 1,1;
  • пенобетон с повышенной теплоизоляцией – 1.

Чем больше площадь окон относительно пола, тем больше тепла теряет дом:

Соотношение площади окон к площади пола Значение коэффициента
10% 0,8
10-19% 0,9
20% 1,0
21-29% 1,1
30% 1,2
31-39% 1,3
40% 1,4
50% 1,5

Температура за окном тоже вносит свои коррективы. При низких показателях теплопотери возрастают:

  • До -10С – 0,7;
  • -10С – 0,8;
  • -15C — 0,90;
  • -20C — 1,00;
  • -25C — 1,10;
  • -30C — 1,20;
  • -35C — 1,30.

Теплопотери находятся в зависимости и от того, сколько внешних стен у дома:

  • четыре стены – 1,33;%
  • три стены – 1,22;
  • две стены – 1,2;
  • одна стена – 1.

Хорошо, если к нему пристроен гараж, баня или что-то ещё.  А вот если его со всех сторон обдувают ветра, то придётся покупать котёл помощнее.

Количество этажей или тип помещения, которые находится над комнатой определяют коэффициент К6 следующим образом: если над дом имеет два и более этажей, то для расчётов берём значение 0,82, а вот если чердак, то для теплого – 0,91 и 1 для холодного.

Что касается высоты стен, то значения будут такими:

  • 4,5 м – 1,2;
  • 4,0 м – 1,15;
  • 3,5 м – 1,1;
  • 3,0 м – 1,05;
  • 2,5 м – 1.

Помимо перечисленных коэффициентов также учитываются площадь помещения (Пл) и удельная величина теплопотерь (УДтп).

Итоговая формула для расчёта коэффициента тепловых потерь:

Тп = УДтп * Пл * К1 * К2 * К3 * К4 * К5 * К6 * К7.

Коэффициент УДтп равен 100 Ватт/м2.

Современные отопительные элементы

Крайне редко можно сегодня увидеть дом, в котором отопление выполняется исключительно воздушными источниками. К ним можно отнести электрические отопительные приборы: тепловентиляторы, радиаторы, УФО, тепловые пушки, электрические камины, печи. Рациональнее всего использовать их в качестве вспомогательных элементов при стабильно работающей основной отопительной системе. Причина их «второстепенности» — достаточно высокая себестоимость электроэнергии.

Основные элементы системы отопления

При планировании отопительной системы любого типа важно знать, что есть общепринятые рекомендации, касающиеся удельной мощности используемого нагревательного котла. В частности, для северных регионов страны она составляет примерно 1,5 – 2,0 кВт, в центральных — 1,2 – 1,5 кВт, в южных — 0,7 – 0,9 кВт

При этом перед тем, как рассчитать систему отопления, для вычисления оптимальной мощности котла следует воспользоваться формулой:

W кот. = S*W / 10.

Расчет системы отопления зданий, а именно – мощности котла – важный этап при планировании создания отопительной системы

При этом важно обратить особенное внимание на следующие параметры:

  • суммарная площадь всех помещений, которые будут подключены к отопительной системе – S;
  • рекомендованная удельная мощность котла (параметр, зависящий от региона).

Допустим, что необходимо рассчитать емкость системы отопления  и мощность котла для дома, в котором суммарная площадь помещений, которые необходимо отапливать S = 100 м2. При этом возьмем рекомендованную удельную мощность для центральных регионов страны и подставим данные в формулу. Получим:

W кот. = 100*1,2/10=12 кВт.

1 Простые приёмы расчёта

Чтобы отопление в доме было эффективным и качественным, а также были созданы комфортные условия проживания, система должна выполнять две важные функции. Они очень похожи между собой и мало чем отличаются:

  1. 1. Оптимальная температура воздуха во всём помещении на постоянной основе. Под потолком воздух будет теплее, но разница должна быть незначительная. Согласно общепринятым правилам, оптимальной температурой в помещении считается около +20 градусов Цельсия. Система отопления должна иметь возможность прогреть определённый объём воздуха до необходимой температуры в помещении. Если говорить о юридической стороне вопроса, то все требуемые параметры прописаны в государственных стандартах, а в частности в ГОСТ 30494–96 .
  2. 2. Компенсирование теплопотерь через элементы здания. К сожалению, тепловые потери являются серьёзным соперником системы отопления. Хотя их и можно минимизировать с помощью хорошей теплоизоляции, но полностью устранить не получится.

Разумеется, чтобы система отопления справлялась со своей основной задачей, она должна иметь запас мощности с учётом теплопотерь. Кроме этого, мощность нужно выбирать с учётом площади помещения и его расположения в здании, а также в соответствии с другими требованиями.

Как правило, рассчитывать эти данные необходимо, начиная с каждой отдельной комнаты, после чего складывать все данные и добавлять 10% запаса для того, чтобы устройство не работало на своих пределах. При этом количество радиаторов в комнате после этого определить несложно, поскольку расчёты имеются по каждой из них.

Самый примитивный способ подсчёта — использование формулы:

Q = Sх 100, где:

  • Q — необходимое количество тепла для здания;
  • S — площадь помещения;
  • 100 — количество мощность в Вт на 1 кв. м.

помещения, а не от её квадратуры

Разумеется, что рассчитывать теперь нужно, отталкиваясь от мощности на один кубический метр, а не квадратный. Таким образом, для кирпичного дома будет достаточно 34 кВт на один кубический метр, а для панельного 41 кВт.

Результат можно получить более точный, так как здесь учитываются не только размеры площади помещения, но и в определённой степени тип стен.

С другой стороны, максимальная точность определяется совсем по-другому. Связано это с упущением многих нюансов, которые влияют на теплопотери.

Особенности расчета СВО

После нахождения показателя ТП переходят к гидравлическому расчету (далее — ГР), на основе которого получают информацию о:

  • оптимальном диаметре труб, который при перепадах давления будет способен пропускать заданное количество теплоносителя;
  • расходе теплоносителя на определенном участке;
  • скорости движения воды;
  • значении удельного сопротивления.

Перед началом расчетов для упрощения вычислений изображают пространственную схему системы, на которой все ее элементы располагают параллельно друг другу.

Рассмотрим основные этапы расчетов водяного отопления.

ГР главного циркуляционного кольца

Методика расчета ГР основывается на предположении, что во всех стояках и ветвях перепады температуры одинаковые.

Алгоритм расчета следующий:

На изображенной схеме, учитывая теплопотери,  наносят тепловые нагрузки, действующие на отопительные приборы, стояки.
Исходя из схемы, выбирают главное циркуляционное кольцо (далее — ГЦК). Особенность этого кольца в том, что в нем циркуляционное давление на единицу длины кольца принимает наименьшее значение.
ГЦК разбивают на участки, имеющие постоянные расход тепла. Для каждого участка указывают номер, тепловую нагрузку, диаметр и длину.

В вертикальной системе однотрубного типа в качестве ГЦК берется то кольцо, через которое проходит наиболее нагруженный стояк при тупиковом или попутном движении воды по магистралям.

В горизонтальной системе однотрубного типа ГЦК должно иметь наименьшее циркуляционное давление да единицу длины кольца. Для систем с естественной циркуляцией ситуация аналогична.

При ГР стояков вертикальной системы однотрубного типа проточные, проточно-регулируемые стояки, имеющие в своем составе унифицированные узлы, рассматривают в качестве единого контура. Для стояков с замыкающими участками производят разделение, учитывая распределение воды в трубопроводе каждого приборного узла.

Расход воды на заданном участке вычисляется по формуле:

В выражении буквенные символы принимаю следующие значения:

— тепловая нагрузка контура;

— добавочные табличные коэффициенты, учитывающие теплоотдачу в помещении;

c — теплоемкость воды, равна 4,187;

— температура воды в подающем магистрали;

— температура воды в обратной магистрали.

ГР второстепенного циркуляционного кольца

После ГР главного кольца определяют давление в малом циркуляционном кольце, образующееся через ближайшие его стояки, учитывая, что потери давления могут отличаться на не более чем 15 % при тупиковой схеме и не более, чем на 5%, при попутной.

Если невозможно увязать потери давления, устанавливают дроссельную шайбу, диаметр которой вычисляют с использованием программных методов.

Расчет радиаторных батарей

Вернемся к плану дома, размещенного выше. Путем вычислений было выявлено, что для поддержания теплового баланса потребуется 16 кВт энергии. В рассматриваемом доме 6 помещений разного назначения – гостиная, санузел, кухня, спальня, коридор, прихожая.

Исходя из габаритов конструкции, можно вычислить объем V:

V=6*8*2.5=120 м3

Далее нужно найти количество тепловой мощности на один м3. Для этого Q необходимо поделить на найденный объем, то есть:

P=16000/120=133 Вт на м3

Далее необходимо определить, сколько тепловой мощности потребуется для одной комнаты. На схеме площадь каждого помещения уже рассчитана. Определим объем:

  • санузел – 4.19*2.5=10.47;
  • гостиная – 13.83*2.5=34.58;
  • кухня – 9.43*2.5=23.58;
  • спальня – 10.33*2.5=25.83;
  • коридор – 4.10*2.5=10.25;
  • прихожая – 5.8*2.5=14.5.

В расчетах также нужно учитывать помещения, в которых отопительных батарей нет, например, коридор.

Определим необходимое количество тепла для каждой комнаты, умножив объем комнаты на показатель Р. Получим требуемую мощность:

  • для санузла: 10.47*133=1392 Вт;
  • для гостиной: 34.58*133=4599 Вт;
  • для кухни: 23.58*133=3136 Вт;
  • для спальни: 25.83*133=3435 Вт;
  • для коридора: 10.25*133=1363 Вт;
  • для прихожей: 14.5*133=1889 Вт.

Приступим к расчету радиаторных батарей. Будем использовать алюминиевые радиаторы, высота которых составляем 60 см, мощность при температуре 70 равна 150 Вт. Подсчитаем необходимое количество радиаторных батарей.

  • санузел: 1392:150=10
  • гостиная: 4599:150=31
  • кухня: 3136:150=21
  • спальня: 3435:150=23
  • прихожая: 1889:150=13

Итого потребуется 98 радиаторных батарей

Однотрубная отопительная система

Пример расчета системы отопления, выполняемый при планировании однотрубной системы, является несколько более простым по сравнению с системой двухтрубной. Прежде всего, он содержит меньше особенностей, которые проявляются при определении необходимой для качественного отопления площади поверхности нагревательного элемента. Кроме того, в такой системе возникает сравнительно меньше сложностей при определении продолжительности и диаметра участков замыкающих.

При этом важным фактором является уровень давления в трубе. С другой стороны, расчеты можно производить и несколько по-иному – изначально определить диаметры трубы, используемой для основного контура, и только после этого – для замыкающих сегментов системы

При этом важно отобразить результаты исследований на графике – ведь в его помощью в дальнейшем будет производиться расчет коэффициента затекания

Следует помнить, что количество воды, циркулирующей в системе, может изменяться под количеством многочисленных факторов. По этому, не следует относиться к количеству воды в системе, как к постоянной величине.

Вертикальная отопительная система

При разработке предварительной план-схемы вертикальной отопительной системы для нумерации стояков следует использовать арабские цифры. При этом начало нумерации следует проводить от квартиры, которая на схеме изображена в верхнем левом углу, и постепенно перемещаться по часовой стрелке. Предварительный план со строгим соблюдением масштабности позволяет определить продолжительность отдельного участка отопительной системы с точностью до 0,1 м.

Вертикальная отопительная система

При планировании отопительной системы дома особое внимание программа для расчета системы отопления должна уделить определению тепловой нагрузки участков. Для этого следует вычислить плотность теплового потока, который отдается теплоносителем

При этом изначально выясняется уровень распределения тепловой нагрузки для всех отопительных элементов, присутствующих в сети, а уже после этого определяют и тепловую нагрузку отдельных участков системы.

При отображении тепловой нагрузки участка (Qi-j) на плане ее показывают над выносной линией. А под этой чертой обозначена продолжительность данного отрезка системы.

Опубликовано 02.06.2020 Обновлено 13.06.2020 Пользователем admin

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

один × три =

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector