Пример расчета однокольцевого газопровода

Гидравлический расчёт и решаемые задачи

В процессе выполнения гидравлического расчёта отопительной системы, решается достаточно большой круг вопросов обеспечения выполнения приведенных выше и целого ряда дополнительных требований. В частности, находится диаметр труб на всех секторах по рекомендованным параметрам, включающим определение:

  • скорости движения теплоносителя;
  • оптимального теплообмена на всех участках и приборах системы, с учётом обеспечения его экономической целесообразности.

Пример расчета однокольцевого газопровода
трение о стенки трубыи т. п.

Учитывая разветвлённость современных отопительных систем и конструктивные требования реализации наиболее распространённых схем разводки, например, примерное равенство длин ветвей в коллекторной схеме, расчёт гидравлики даёт возможность учесть такие особенности. Это позволит обеспечить более качественную автобалансировку и увязку ветвей, включенных параллельно или по другой схеме. Такие возможности часто требуются в ходе эксплуатации с применением запорных и регулирующих элементов, в случае необходимости отключения или перекрытия отдельных веток и направлений, при возникновении необходимости работы системы в нестандартных режимах.

Определение сопротивления

Пример расчета однокольцевого газопроводаЗачастую инженеры сталкиваются с расчетами систем теплоснабжения крупных объектов. Такие системы требуют большого количества отопительных приборов и сотни погонных метров труб. Выполнить расчет гидравлического сопротивления системы отопления можно с помощью уравнений или специальных автоматизированных программ.

Чтобы определить относительные теплопотери на сцепление в магистрали, применяют следующее приближенное уравнение: R = 510 4 v 1.9 / d 1,32 (Па/м). Применение данного уравнения оправдано для скоростей не более 1,25 м/с.

Если известно значение потребления горячей воды, то применяют приближенное уравнение для нахождения сечения внутри трубы: d = 0,75 √G (мм). После получения результата потребуется обратиться к специальной таблице, чтобы получить сечение условного прохода.

Принцип работы открытой системы отопления с циркуляционным насосом

Классификация газопроводов

Современные газопроводы – это целая система комплексов сооружений, предназначенных для транспортировки горючего топлива от мест его добычи до потребителей. Поэтому по предназначению они бывают:

  • Магистральными – для транспортировки на большие расстояния от мест добычи до пунктов назначения.
  • Местными – для сбора, распределения и подачи газа к объектам населённых пунктов и предприятий.

Пример расчета однокольцевого газопровода

По магистральным трассам сооружаются компрессорные станции, которые нужны для поддержания в трубах рабочего давления и поставки газа до назначенных пунктов к потребителям в необходимых объёмах, рассчитанных заранее. В них газ очищается, осушается, сжимается и охлаждается, а затем возвращается в газопровод под определённым давлением, необходимым для данного участка прохождения топлива.

Местные газопроводы, расположенные в населённых пунктах, классифицируются:

  • По виду газа – транспортироваться может природный, сжиженный углеводородный, смешанный и др.
  • По давлению – на разных участках газ бывает с низким, средним и высоким давлением.
  • По расположению – наружные (уличные) и внутренние, надземные и подземные.

Обзор программ для гидравлических вычислений

Пример расчета однокольцевого газопровода

По существу любой гидравлический расчет систем водяного отопления считается непростой инженерной задачей. Для ее решения были разработаны ряд программных комплексов, которые облегчают выполнение такой процедуры.

Можно попытаться выполнить гидравлический расчет системы обогрева в оболочке Excel, воспользовавшись уже готовыми формулами. Однако при этом возможно появление следующих проблем:

  • Большая погрешность. Во многих случаях как пример гидравлического расчета системы для отопления берутся с одной или двумя трубами схемы. Найти такие же вычисления для коллекторной проблематично;
  • Для правильного учета сопротивления в плане гидравлики трубопровода нужны справочные данные, которые отсутствуют в форме. Их необходимо искать и вводить дополнительно.

Oventrop CO

Пример расчета однокольцевого газопровода

Наиболее простая и ясная программа для гидравлического расчета теплосети. Интуитивный интерфейс и гибкая настройка смогут помочь быстро разобраться с невидимыми моментами ввода данных. Маленькие проблемы могут появиться при первой настройке комплекса. Потребуется ввести все параметры системы, начиная от самого материала труб и завершая размещением ТЕНОВ.

Отличается гибкостью настроек, возможностью делать самый простой гидравлический расчет теплоснабжения как для новой теплосети, так же и для модернизации старой. Выделяется от заменителей хорошим графическим интерфейсом.

Instal-Therm HCR

Программный комплекс рассчитывается для профессионального сопротивления в плане гидравлики теплосети. Бесплатная версия имеет очень много противопоказаний. Сфера использования – проектирование теплоснабжения в больших общественных и производственных зданиях.

В практических условиях для теплоснабжения автономного типа частных квартир и домов гидравлический расчет делается не всегда. Однако это способно привести к ухудшению работы системы обогрева и быстрой поломке его компонентов – отопительных приборов, труб и котла. Что этого избежать нужно вовремя высчитать параметры системы и сопоставить их с фактическими для последующей оптимизации работы теплоснабжения.

HERZ C.O.

Характеризуется гибкостью настроек, возможностью делать упрощенный гидравлический расчет отопления как для новой системы теплоснабжения, так и для модернизации старой. Отличается от аналогов удобным графическим интерфейсом.

Вариант вычислений с помощью ПК

Выполнение исчисления с использованием компьютера является наименее трудоемким — все, что требуется от человека, это вставить в соответствующие графы нужные данные.

Поэтому гидравлический расчет делается за несколько минут, причем для этой операции не потребуется большого запаса знаний, который необходим при использовании формул.

Для его правильного выполнения необходимо взять из технических условий следующие данные:

  • плотность газа;
  • коэффициент кинетической вязкости;
  • температуру газа в своем регионе.

Необходимые техусловия получают в горгазе населенного пункта, в котором будет строиться газопровод. Собственно, с получения этого документа и начинается проектирование любого трубопровода, ведь там содержатся все основные требования к его конструкции.

Пример расчета однокольцевого газопроводаИспользование специальных программ является простейшим способом гидравлического расчета, исключающим поиск и изучение формул для проведения вычислений

Далее застройщику необходимо узнать расход газа для каждого прибора, который планируется подключить к газопроводу. К примеру, если топливо будет транспортироваться в частный дом, то там чаще всего используются плиты для приготовления пищи, всевозможные отопительные котлы, а в их паспортах всегда стоят нужные цифры.

Кроме того, потребуется знать количество конфорок у каждой плиты, которая будет подключена к трубе.

На следующем этапе сбора необходимых данных отбирается информация о падении давления в местах установки какого-либо оборудования — это может быть счетчик, клапан отсекатель, термозапорный клапан, фильтр, прочие элементы.

В этом случае нужные цифры найти просто — они содержатся в специальной таблице, приложенной к паспорту каждого изделия

Проектировщику следует обратить внимание на то, что должно указываться падение давления при максимальном потреблении газа

Пример расчета однокольцевого газопроводаИз специальной таблицы, приложенной к паспорту изделий, можно узнать сведения о потере давления при подключении приборов к сети

На следующем этапе рекомендуется узнать, каково будет давление голубого топлива в точке врезки. Такие сведения могут содержать технические условия своего горгаза, ранее составленная схема будущего газопровода.

Если сеть будет состоять из нескольких участков, то их необходимо пронумеровать и указать фактическую длину. Кроме того, для каждого следует прописать все изменяемые показатели отдельно — это общий расход любого прибора, который будет использоваться, падение давления, другие значения.

В обязательном порядке понадобится коэффициент одновременности. Он учитывает возможность совместной работы всех потребителей газа, подключенных к сети. Например, всего отопительного оборудования, расположенного в многоквартирном или же частном доме.

Такие данные используются программой, выполняющей гидравлический расчет, для определения максимальной нагрузки на каком-либо участке или во всем газопроводе.

Для каждой отдельной квартиры или дома указанный коэффициент рассчитывать не нужно, так как его значения известны и указаны в приложенной ниже таблице:

Пример расчета однокольцевого газопроводаТаблица с коэффициентами одновременности, данные из которой используются при любом виде расчетов. Достаточно выбрать графу, соответствующую конкретному бытовому прибору, и взять нужную цифру

Если на каком-то объекте планируется использовать более двух обогревательных котлов, печей, емкостных водонагревателей, то показатель одновременности всегда будет равняться 0,85. Что и нужно будет указать в соответствующей графе, используемой для расчета, программы.

Далее следует указать диаметр труб, а еще понадобятся коэффициенты их шероховатости, которые будут использоваться при строительстве трубопровода. Эти значения стандартные и их легко можно найти в Своде правил.

Подбор оптимального диаметра трубопровода

Определение оптимального диаметра трубопровода – это сложная производственная задача, решение которой зависит от совокупности различных взаимосвязанных условий (технико-экономические, характеристики рабочей среды и материала трубопровода, технологические параметры и т.д.). Например, повышение скорости перекачиваемого потока приводит к уменьшению диаметра трубы, обеспечивающей заданный условиями процесса расход носителя, что влечет за собой снижение затрат на материалы, удешевлению монтажа и ремонта магистрали и т.д. С другой стороны, повышение скорости потока  приводит к потере напора, что требует дополнительных энергетических и финансовых затрат на перекачку заданного объема носителя.

Значение оптимального диаметра трубопровода рассчитывается по преобразованному уравнению неразрывности потока с учетом заданного расхода носителя:

Пример расчета однокольцевого газопровода

 При гидравлическом расчете расход перекачиваемой жидкости чаще всего задан условиями задачи. Значение скорости потока перекачиваемого носителя определяется, исходя из свойств заданной среды и соответствующих справочных данных (см. таблицу).

Пример расчета однокольцевого газопровода

Преобразованное уравнение неразрывности потока для расчета рабочего диаметра трубы имеет вид:

Пример расчета однокольцевого газопровода

Расчет расхода на ограниченном участке

Если газопровод состоит из отдельных участков, то расчет суммарного расхода на каждом из них придется выполнять отдельно. Но это несложно, так как для вычислений потребуются уже известные цифры.

Определение данных с помощью программы

Зная изначальные показатели, имея доступ к таблице одновременности и к техническим паспортам плит и котлов, можно приступать к расчету. Для этого выполняются следующие действия (пример приведен для внутридомового газопровода именно низкого давления):

  1. Количество котлов умножается на производительность каждого из них.
  2. Полученное значение умножается на уточненный с помощью специальной таблицы коэффициент одновременности для этого вида потребителей.
  3. Количество плит, предназначенных для приготовления пищи, умножается на производительность каждой из них.
  4. Полученное после предыдущей операции значение умножается на коэффициент одновременности, взятый из специальной таблицы.
  5. Полученные суммы для котлов и плит суммируются.

Подобные манипуляции проводятся для всех участков газопровода. Полученные данные вводятся в соответствующие графы программы, с помощью которой выполняются исчисления. Все остальное электроника делает сама.

Расчет с использованием формул

Этот вид гидравлического расчета схож с описанным выше, то есть потребуются те же данные, но процедура будет длительной. Так как все придется выполнять вручную, кроме того, проектировщику понадобится осуществить ряд промежуточных операций, чтобы использовать полученные значения для окончательного подсчета.

А также придется уделить достаточно много времени, чтобы разобраться во многих понятиях, вопросах, которые человек не встречает при использовании специальной программы. В справедливости вышеизложенного можно убедиться, ознакомившись с формулами, которые предстоит использовать.

Пример расчета однокольцевого газопроводаРасчет с помощью формул сложный, поэтому доступный не всем. На картинке изображены формулы для расчета падения давления в сети высокого, среднего и низкого давления и коэффициент гидравлического трения

В применении формул, как и в случае с гидравлическим расчетом с использованием специальной программы, есть особенности для газопроводов высокого, среднего и, конечно же, низкого давления. И об этом стоит помнить, так как ошибка чревата, причем всегда, внушительными финансовыми издержками.

Вычисления с помощью номограмм

Какая-либо специальная номограмма представляет собой таблицу, где указаны ряд значений, изучив которые можно получить нужные показатели, не выполняя вычислений. В случае с гидравлическим расчетом — диаметр трубы и толщину ее стенок.

Пример расчета однокольцевого газопроводаНомограммы для расчета являются простым способом получения нужных сведений. Достаточно обратиться к строкам, отвечающим заданным характеристикам сети

Существуют отдельные номограммы для полиэтиленовых и стальных изделий. При расчете их использовались стандартные данные, к примеру, шероховатость внутренних стенок. Поэтому за правильность информации можно не переживать.

Мощность генератора тепла

Одним из основных узлов отопительной системы является котел: электрический, газовый, комбинированный – на данном этапе не имеет значения. Поскольку нам важна главная его характеристика – мощность, то есть количество энергии за единицу времени, которая будет уходить на отопление.

Мощность самого котла определяется по ниже приведённой формуле:

Wкотла = (Sпомещ*Wудел) / 10,

где:

  • Sпомещ – сумма площадей всех комнат, которые требую отопления;
  • Wудел – удельная мощность с учётом климатических условий местоположения (вот для чего нужно было знать климат региона).

Что характерно, для разных климатических зон имеем следующие данные:

  • северные области – 1,5 – 2 кВт/м2;
  • центральная зона – 1 – 1,5 кВт/м2;
  • южные регионы – 0,6 – 1 кВт/м2.

Эти цифры достаточно условны, но тем не менее дают явный численный ответ относительно влияния окружающей среды на систему отопления квартиры.

Пример расчета однокольцевого газопровода
На данной карте представлены климатические зоны с разными температурными режимами. От расположения жилья относительно зоны и зависит сколько нужно тратить на обогрев метра квадратного кВатт энергии (+)

Правила выполнения расчета

Выше указывалось, что процедуру любого гидравлического расчета регламентирует профильный Свод правил с номером 42-101–2003.

Документ свидетельствует, что основным способом выполнения исчисления является использование для этой цели компьютера со специальными программами, позволяющими рассчитать планируемую потерю давления между участками будущего газопровода или нужный диаметр труб.

Пример расчета однокольцевого газопроводаЛюбой гидравлический расчет выполняется после создания расчетной схемы, включающей основные показатели. Более того, в соответствующие графы пользователь вносит известные данные

Если нет таких программ или человек считает, что их использование нецелесообразно, то можно применять другие, разрешенные Сводом правил, методы. К которым относятся:

  • расчет по приведенным в СП формулам — это самый сложный способ расчета;
  • расчет по, так называемым, номограммам — это более простой вариант, чем использование формул, ведь какие-либо исчисления производить не придется, потому что необходимые данные указаны в специальной таблице и приведены в Своде правил, и их просто нужно подобрать.

Любой из методов расчета приводит к одинаковым результатам. А поэтому вновь построенный газопровод будет способен обеспечить своевременную, бесперебойную подачу планируемого количества топлива даже в часы его максимального использования.

Гидравлический расчет трубопроводов в Excel по формулам СНиП 2.04.02-84.

Этот расчет определяет потери на трение в трубопроводах по эмпирическим формулам без учета коэффициентов местных сопротивлений, но с учетом сопротивлений, вносимых стыками.

На длинных трубопроводах, каковыми являются водопроводы и теплотрассы, влияние местных сопротивлений мало по сравнению с шероховатостью стенок труб и перепадами высот, и часто коэффициентами местных сопротивлений можно пренебречь при оценочных расчетах.

Исходные данные:

Этот расчет использует ранее введенные в предыдущем расчете значения внутреннего диаметра трубопровода d и длины трубопровода L, а также рассчитанное значение скорости движения воды v.

1. Выбираем из выпадающего списка, расположенного над ячейками A30…E30 вид трубы:

Неновые стальные и неновые чугунные без внутр. защитного покр. или с битумным защитным покр., v > 1,2м/c

Пример расчета однокольцевого газопровода

Результаты расчетов:

По выбранному виду трубы Excel автоматически извлекает из таблицы базы данных значения эмпирических коэффициентов. Таблица базы данных, взятая из СНиП 2.04.02–84, расположена на этом же рабочем листе «РАСЧЕТ».

2.Коэффициент m извлекается

в ячейку D32: =ИНДЕКС(H31:H42;H29) =0,300

3.Коэффициент A извлекается

в ячейку D33: =ИНДЕКС(I31:I42;I29) =1,000

4.Коэффициент 1000A1 извлекается

в ячейку D34: =ИНДЕКС(J31:J42;J29) =21,000

5.Коэффициент 1000A1/(2g) извлекается

в ячейку D35: =ИНДЕКС(K31:K42;K29) =1,070

6.Коэффициент С извлекается

в ячейку D36: =ИНДЕКС(L31:L42;L29) =0,000

7.Коэффициент  гидравлического сопротивления i  в м.вод.ст./м рассчитываем

в ячейке D37: =D35/1000*((D33+D36/D16)^D32)/((D7/1000)^(D32+1))*D16^2 =0,057

i=((1000A1/(2g))/1000)*(((A0+C/v)m)/((d/1000)(m+1)))*v2

8.Расчетные потери давления в трубопроводе dPв кг/см2 и Па находим соответственно

в ячейке D38: =D39/9,81/10000 =0,574497

dP=dP/9,8110000

и в ячейке D39: =D37*9,81*1000*D8 =56358,1

dP=i*9,81*1000*L

Гидравлический расчет трубопровода по формулам Приложения 10 СНиП 2.04.02–84 в Excel завершен!

Обзор программ

Для удобства расчётов применяются любительские и профессиональные программы вычисления гидравлики.

Самой популярной является Excel.

Можно воспользоваться онлайн-расчётом в Excel Online, CombiMix 1.0, или онлайн-калькулятором гидравлического расчёта. Стационарную программу подбирают с учётом требований проекта.

Главная трудность в работе с такими программами — незнание основ гидравлики. В некоторых из них отсутствуют расшифровки формул, не рассматриваются особенности разветвления трубопроводов  и вычисления сопротивлений в сложных цепях.

Особенности программ:

  • HERZ C.O. 3.5 – производит расчёт по методу удельных линейных потерь давления.
  • DanfossCO и OvertopCO – умеют считать системы с естественной циркуляцией.
  • «Поток» (Potok) — позволяет применять метод расчёта с переменным (скользящим) перепадом температур по стоякам.

Следует уточнять параметры ввода данных по температуре — по Кельвину/по Цельсию.

Виды систем отопления

Задачи инженерных расчётов такого рода осложняются высоким разнообразием систем отопления, как с точки зрения масштабности, так и в плане конфигурации. Различают несколько видов отопительных развязок, в каждой из которых действуют свои закономерности:

1. Двухтрубная тупиковая система — наиболее распространённый вариант устройства, неплохо подходящий для организации как центральных, так и индивидуальных контуров обогрева.

Пример расчета однокольцевого газопровода
Двухтрубная тупиковая система отопления

2. Однотрубная система или «Ленинградка» считается лучшим способом устройства гражданских отопительных комплексов тепловой мощностью до 30–35 кВт.

Пример расчета однокольцевого газопровода
Однотрубная система отопления с принудительной циркуляцией: 1 — котёл отопления; 2 — группа безопасности; 3 — радиаторы отопления; 4 — кран Маевского; 5 — расширительный бак; 6 — циркуляционный насос; 7 — слив

3. Двухтрубная система попутного типа — наиболее материалоёмкий вид развязки отопительных контуров, отличающийся при этом наивысшей из известных стабильностью работы и качеством распределения теплоносителя.

Пример расчета однокольцевого газопровода
Двухтрубная попутная система отопления (петля Тихельмана)

4. Лучевая разводка во многом схожа с двухтрубной попуткой, но при этом все органы управления системой вынесены в одну точку — на коллекторный узел.

Пример расчета однокольцевого газопровода
Лучевая схема отопления: 1 — котёл; 2 — расширительный бак; 3 — коллектор подачи; 4 — радиаторы отопления; 5 — коллектор обратки; 6 — циркуляционный насос

Прежде чем приступить к прикладной стороне расчётов, нужно сделать пару важных предупреждений. В первую очередь нужно усвоить, что ключ к качественному расчёту лежит в понимании принципов работы жидкостных систем на интуитивном уровне. Без этого рассмотрение каждой отдельно взятой развязки превращается в переплетение сложных математических выкладок. Второе — практическая невозможность изложить в рамках одного обзора больше, чем базовые понятия, за более подробными разъяснениями лучше обратиться к такой литературе по расчёту отопительных систем:

  • Пырков В. В. «Гидравлическое регулирование систем отопления и охлаждения. Теория и практика» 2-е издание, 2010 г.
  • Р. Яушовец «Гидравлика — сердце водяного отопления».
  • Пособие «Гидравлика котельных» от компании De Dietrich.
  • А. Савельев «Отопление дома. Расчёт и монтаж систем».

Цель и ход выполнения расчета

Конечно, за результатами можно обратиться к специалистам либо воспользоваться онлайн-калькулятором, коих хватает на всяких интернет-ресурсах. Но первое стоит денег, а второе может дать некорректный результат и его все равно надо проверять.

Так что лучше набраться терпения и взяться за дело самому. Надо понимать, что практическая цель гидравлического расчета – это подбор проходных сечений труб и определение перепада давления во всей системе, чтобы верно выбрать циркуляционный насос.

Общая схема расчета выглядит таким образом:

  • подготовка аксонометрической схемы: когда уже выполнен расчет отопительных приборов, то известна их мощность, ее надо нанести на чертеж возле каждого радиатора;
  • определение расхода теплоносителя и диаметров трубопроводов;
  • расчет сопротивления системы и подбор циркуляционного насоса;
  • расчет объема воды в системе и вместительности расширительного бака.

Любой гидравлический расчет системы отопления начинается со схемы, нарисованной в 3 измерениях для наглядности (аксонометрия). На нее наносятся все известные данные, в качестве примера возьмем участок системы, изображенный на чертеже:

Динамические параметры теплоносителя

Переходим к следующему этапу расчетов – анализ потребления теплоносителя. В большинстве случаев система отопления квартиры отличается от иных систем – это связанно с количеством отопительных панелей и протяженностью трубопровода. Давление используется в качестве дополнительной “движущей силы” потока вертикально по системе.

В частных одно- и многоэтажных домах, старых панельных многоквартирных домах применяются системы отопления с высоким давлением, что позволяет транспортировать теплоотдающее вещество на все участки разветвлённой, многокольцевой системы отопления и поднимать воду на всю высоту (до 14-ого этажа) здания.

Напротив, обычная 2- или 3- комнатная квартира с автономным отоплением не имеет такого разнообразия колец и ветвей системы, она включает не более трех контуров.

А значит и транспортировка теплоносителя происходит с помощью естественного процесса протекания воды. Но также можно использовать циркуляционные насосы, нагрев обеспечивается газовым/электрическим котлом.

Пример расчета однокольцевого газопровода
Рекомендуем применять циркуляционный насос для отопления помещений более 100 м2. Монтировать насос можно как до так и после котла, но обычно его ставят на “обратку” – меньше температура носителя, меньше завоздушенность, больше срок эксплуатации насоса

Специалисты в сфере проектирования и монтажа систем отопления определяют два основных подхода в плане расчёта объёма теплоносителя:

  1. По фактической емкости системы. Суммируются все без исключения объёмы полостей, где будет протекать поток горячей воды: сумма отдельных участков труб, секций радиаторов и т.д. Но это достаточно трудоёмкий вариант.
  2. По мощности котла. Здесь мнения специалистов разошлись очень сильно, одни говорят 10, другие 15 литров на единицу мощности котла.

С прагматичной точки зрения нужно учитывать, тот факт что наверное система отопления будет не только подавать горячую воду для комнаты, но и нагревать воду для ванной/душа, умывальника, раковины и сушилки, а может и для гидромассажа или джакузи. Этот вариант попроще.

Поэтому в данном случае рекомендуем установить 13,5 литров на единицу мощности. Умножив этот число на мощность котла (8,08 кВт) получаем расчётный объём водяной массы – 109,08 л.

Вычисляемая скорость теплоносителя в системе является именно тем параметром, который позволяет подбирать определённый диаметр трубы для системы отопления.

Она высчитывается по следующей формуле:

V = (0,86*W*k)/t-to,

где:

  • W – мощность котла;
  • t – температура подаваемой воды;
  • to – температура воды в обратном контуре;
  • k – кпд котла (0,95 для газового котла).

Подставив в формулу расчетные данные, имеем: (0.86 * 8080* 0.95)/80-60 = 6601,36/20=330кг/ч. Таким образом за один час в системе перемещается 330 л теплоносителя (воды), а ёмкость системы около 110 л.

Эффективность системы отопления «на глазок»

Во многом суммы таких затрат зависят от:

  • требуемых диаметров трубопроводов
  • фитингов и соответствующих им приборов отопления
  • переходников
  • регулировочной и запорной арматуры

Пример расчета однокольцевого газопровода

В большинстве современных индивидуальных отопительных комплексов применяются электронасосы для обеспечения принудительной циркуляции теплоносителя, в качестве которого часто используются незамерзающие составы антифризов. Гидравлическое сопротивление таких систем отопления для разных их типов теплоносителей будет разным.

Учитывая постоянно растущую стоимость энергоносителей (все виды топлива, электроэнергия) и расходных материалов (теплоносители, запчасти и пр.), следует с самого начала стремиться заложить в систему принцип минимизации расходов на эксплуатацию системы. Опять же, исходя из их оптимального соотношения для решения задачи создания комфортного температурного режима в отапливаемых помещениях.

Разумеется, соотношение мощности всех элементов отопительной системы должны обеспечивать оптимальный режим подачи теплоносителяк приборам отопления в объёме достаточном для выполнения основной задачи всей системы — обогрева и поддержания заданного температурного режима внутри помещения, независимо от изменения наружных температур. К элементам отопительной системы относятся:

  • котел
  • насос
  • диаметр труб
  • регулировочная и запорная арматура
  • тепловые приборы

Помимо того, очень неплохо, если в проект изначально будет заложена определённая «эластичность», допускаюшая переход на иной вид теплоносителя (замена воды на антифриз). Кроме того, отопительная система, при меняющихся режимах эксплуатации никоим образом не должна вносить дискомфорт во внутренний микроклимат помещений.

Гидравлическая увязка

Балансировка перепадов давления в отопительной системе выполняется посредством регулирующей и запорной арматуры.

Пример расчета однокольцевого газопроводаГидравлическая увязка системы производится на основании:

  • проектной нагрузки (массового расхода теплоносителя);
  • данных производителей труб по динамическому сопротивлению;
  • количества местных сопротивлений на рассматриваемом участке;
  • технических характеристик арматуры.

Установочные характеристики – перепад давления, крепление, пропускная способность – задаются для каждого клапана. По ним определяют коэффициенты затекания теплоносителя в каждый стояк, а затем – в каждый прибор.

Потери давления прямо пропорциональны квадрату расхода теплоносителя и измеряются в кг/ч, где

S – произведение динамического удельного давления, выраженного в Па/(кг/ч), и приведенного коэффициента для местных сопротивлений участка (ξпр).

Приведенный коэффициент ξпр является суммой всех местных сопротивлений системы.

Расчет циркуляционного насоса

Подбор и расчет насоса заключается в том, чтобы выяснить потери давления теплоносителя, протекающего по всей сети трубопроводов. Результатом станет цифра, показывающая, какое давление следует развивать циркуляционному насосу, чтобы «продавить» воду по системе. Это давление вычисляют по формуле:

P = Rl + Z, где:

  • Р – потери давления в сети трубопроводов, Па;
  • R – удельное сопротивление трению, Па/м;
  • l – длина трубы на одном участке, м;
  • Z – потеря давления в местных сопротивлениях, Па.

Данный расчет достаточно громоздкий и сложный, в то время как значение Rl для каждого участка можно легко найти по тем же таблицам Шевелева. В примере синим кружочком отмечены значения 1000i на каждом участке, его надо только пересчитать по длине трубы. Возьмем первый участок из примера, его протяженность 5 м. Тогда сопротивление трению будет:

Rl = 26.6 / 1000 х 5 = 0.13 Бар.

Так же производим просчет всех участков попутной системы отопления, а потом результаты суммируем. Остается узнать значение Z, перепад давления в местных сопротивлениях. Для котла и радиаторов эти цифры указаны в паспорте на изделие. На все прочие сопротивления мы советуем взять 20% от общих потерь на трение Rl и все эти показатели просуммировать. Полученное значение умножаем на коэффициент запаса 1.3, это и будет необходимый напор насоса.

Следует знать, что производительность насоса – это не емкость системы отопления, а общий расход воды по всем ветвям и стоякам. Пример его расчета представлен в предыдущем разделе, только для подбора перекачивающего агрегата нужно тоже предусмотреть запас не менее 20%.

Итоги.

Полученные значения потерь давления в трубопроводе, рассчитанные по двум методикам отличаются в нашем примере на 15…17%! Рассмотрев другие примеры, вы можете увидеть, что отличие иногда достигает и 50%! При этом значения, полученные по формулам теоретической гидравлики всегда меньше, чем результаты по СНиП 2.04.02–84. Я склонен считать, что точнее первый расчет, а СНиП 2.04.02–84 «подстраховывается». Возможно, я ошибаюсь в выводах. Следует отметить, что гидравлические расчеты трубопроводов тяжело поддаются точному математическому моделированию и базируются в основном на зависимостях, полученных из опытов.

В любом случае, имея два результата, легче принять нужное правильное решение.

При гидравлическом расчете трубопроводов с перепадом высот входа и выхода не забывайте добавлять (или отнимать) к результатам статическое давление. Для воды – перепад высот в 10 метров ≈ 1 кг/см2.

Прошу уважающих труд автора  скачивать файл после подписки на анонсы статей!

Ссылка на скачивание файла: gidravlicheskiy-raschet-truboprovodov (xls 57,5KB).

Важное и, думаю, интересное продолжение темы читайте здесь

Опубликовано 02.06.2020 Обновлено 13.06.2020 Пользователем admin

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

6 + девятнадцать =

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector